Due to an increasing demand for valuable and critical metals and decreasing onshore resources, the development of deep-sea mining strategies became more important during the last decade. Both polymetallic nodules and seafloor massive sulphide (SMS) deposits have been identified as potential metal resources for the future.
There are more than 300 potentially economic identified deposits containing copper, zinc, lead, gold and silver (Lange et al., 2014). Literature on processing of SMS from either active or inactive hydrothermal vent fields on the Arctic Mid-Ocean Ridge is currently limited. An issue in deep-sea mining is the transport of SMS from the seafloor to the vessel and from the vessel to the processing plant. The mass transport is a key factor in terms of energy consumption in the whole process chain.
To investigate a suitable processing strategy, individual SMS rock samples from the Loki’s Castle area at the Arctic Mid-Ocean Ridge were tested regarding possible preconcentration processes by sensor-based sorting, on either seafloor or vessel. SMS samples were collected during the NTNU Cruise within the MarMine project (Ludvigsen et al., 2016), and stored at the Norwegian University of Science and Technology, Department of Geoscience and Petroleum (Kowalczuk et al., 2018a). Based on a portable XRF (PXRF) analysis for elemental composition of the tested samples, all particles with high copper (Cu) and zinc (Zn) and low barium (Ba) contents were classified as product, whereas particles with low Cu and Zn as well as high Ba and silicon (Si) contents were classified as waste. Classification was based on the elemental composition with a cut-off grade of 0.5% for copper (Kowalczuk et al., 2018b)
Suitable sensor-based detection methods were investigated, including X-ray transmission, metal detection and optical detection. The application of XRT was described in our previous paper (Kowalczuk et al., 2018b). Due to a low grade of sulphides, the application of a conventional metal detector is not suitable for this material.
Characterization of individual particles showed differences in color and brightness. The majority of particles classified as product by PXRF tended to have a greenish color and a darker surface than PXRF-based waste particles, which was caused by the sulphide minerals in the product. Therefore, the application of an optical (color) sensor was investigated. The results showed that preconcentration of SMS could decrease the mass transport and reduce energy consumption of the whole process chain. The mass transport could be reduced by 40% with up to 90% of copper and zinc recovery.
All Authors:
Klaus M. Hahn1), Jutta Lennartz1), Rolf Arne Kleiv2), Kurt Aasly2), Hermann Wotruba1), Przemyslaw B. Kowalczuk2)
1 RWTH Aachen University, Unit of Mineral Processing, Lochnerstrasse 4-20, D-52064 Aachen, Germany
2 NTNU Norwegian University of Science and Technology, Department of Geoscience and Petroleum, Sem Sælands veg 1, NO-7491 Trondheim, Norway
Copyright: | © ANTS - Institut für anthropogene Stoffkreisläufe an der RWTH Aachen | |
Source: | SBSC 2018 (März 2018) | |
Pages: | 8 | |
Price inc. VAT: | € 4,00 | |
Autor: | Univ.-Prof. Dr.- Ing. Hermann Wotruba Klaus M. Hahn Jutta Lennartz Prof. Rolf Arne Kleiv Prof. Kurt Aasly | |
Send Article | Add to shopping cart | Comment article |
InnoBLA III: Auswirkungen der thermischen Bodenbehandlung auf die Mobilität von Schwermetallen und die Korrosion von Heizlanzen
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Die Auswirkungen der thermisch unterstützten Bodenluftabsaugung mit festen Wärmequellen (thermal conduction heating, TCH) auf die Mobilität von Metallen sind noch wenig erforscht. Eine Forschergruppe zeigte einen Anstieg der Mobilität von Fe und Al (Roh, et al., 2000), eine andere erklärte eine erhöhte Ökotoxizität durch eine Änderung der Speziation von Schwermetallen (Bonnard, Devin, Leyval, Morel, & Vasseur, 2010), eine weitere beobachtete einerseits eine schwächere Sorption durch Zerstörung der organischen Substanz, aber auch eine Umverteilung von Fe und Zn in schwerer lösliche Fraktionen (Biache, Mansuy-Huault, Faure, Munier-Lamy, & Leyval, 2008). Die wenigen existierenden Studien zu diesem Thema basieren auf dem rein empirischen Prinzip der sequentiellen Extraktion, welche weder die realen Mechanismen, welche die Mobilität kontrollieren, berücksichtigt, noch die reale Speziation der Schwermetalle untersucht.
Zn Entfernung aus metallurgischen Stäuben mit schwefeloxidierenden
Bakterien
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Zinkhaltige Stahlwerksstäube, wie sie bei der Eisen- und Stahlproduktion über die Route Hochofen- Konverter anfallen, können als bedeutende Sekundärrohstoffe angesehen werden. Gegenwärtig zählen zwei Verfahren zum Stand der Technik bezüglich der Abtrennung und Gewinnung von Zink aus Stahlwerksstäuben, nämlich pyrometallurgische und hydrometallurgische Verfahren. Einige Prozessrouten erzeugen jedoch wiederum nicht verwertbare Sekundärabfälle und können teilweise nur unter hohen Energieaufwand betrieben werden und sind daher ökologisch gesehen nicht als nachhaltig einzustufen.
Vergleich von verschiedenen Metallrückgewinnungstechnologien für
MVA-Schlacken in der Schweiz
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Im Rahmen des Projekts "MetExSlag" wurden vier verschiedene Metallrückgewinnungsanlagen untersucht, um die Metallrückgewinnungsraten, die Metallqualität (bestimmt durch Schmelzausbeuten) und die Restschlackenqualität über Massenbilanzen der Outputströme zu ermitteln. Von jeder Metallrückgewinnungsanlage wurden ca. 100 Tonnen NE-Metalle gesammelt
(Qualität Q1) und in einem zweiten Schritt wurden diese Chargen auf einer mechanischen Veredelungsanlage prozessiert (Qualität Q2) und die Ausbeuten bestimmt.
SELFRAG-Technologie - der Schlüssel für die nächste Generation von
Aufbereitungsanlagen für MVA-Schlacke
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Gegenwärtig realisiert die SELFRAG AG den Aufbau einer neuen Generation
von Aufbereitungsanlagen für MVA-Schlacke, deren innovativer Ansatz die selektive Fragmentierung mit trocken- und nassmechanischen Aufbereitungstechnologien aus Bergbau und Recycling kombiniert. Nebst der Rückgewinnung von Metallkonzentraten mit hoher Qualität, ermöglicht
die Anlage das Recycling von mineralischen Fraktionen. Dadurch wird die Recyclingquote auf 50-60 Gew.-% des Schlackeninputs gesteigert, und der knappe Deponieraum in der Schweiz massiv entlastet. Die neuartigen Fraktionen können in der Schweiz gesetzeskonform als Sekundärrohstoffe in der Zementklinkerproduktion verwertet werden. Zukünftig ist auch ein Einsatz als sekundäre Gesteinskörnung im Beton oder Straßenbau denkbar.
Flotative Kupferrückgewinnung aus Rostaschen der thermischen Abfallverwertung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Beim aktuellen Stand der Technik wird aus den Feinfraktionen der Rostaschen
aus der Abfallverbrennung Kupfer nur unzureichend zurückgewonnen. Die Kupferanreicherung in den Feinfraktionen wird dadurch erschwert, dass ein signifikanter Teil nicht in metallischer Form, sondern als Oxide oder andere mineralischen Verbindungen vorliegt. Ein möglicher Ansatz könnte die Flotation der Aschen sein. Daher wurde Untersuchung zu Thioharnstoff, Thiophosphat
und Thiocarbamat basierten Sammlern anhand synthetischer Aschebesandteilen durchgeführt.
Diese zeigten, zwar einen flotierbarkeit des Kupfers aber auch Interaktionen mit den Matrixbestandteilen, wie Gips und Zement. Daher wurde organische Drücker erprobet, die Kupferausbringen und Anreicherung deutlich steigern konnten.