Mechanical and Thermal Characterization of Multiprocessed PHBs© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
As our society is becoming more conscious and responsible collectively, EU guidelines on the Circular Economy were developed to help companies to practice the same in their industries. Bioplastics as an alternative feedstock are gaining traction as shown by the bioplastics market projection, expecting growth in production capacities from 2.41 million tonnes in 2021 to 7.59 million tonnes by 2026. (European Bioplastics e.V. 2021).
Bio-based FRP composites and their circularity potential: Options for environmental assessment© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
The usage of bio-based materials to substitute fossil resource-based ones, as well as circular economy principles, are gaining importance under the sustainability paradigm (Ramesh 2019). Complex bio-based materials, such as natural fiber reinforced polymer (NFRP) composites, require an environmental life cycle assessment (LCA) to critically assess and verify the anticipated ecological benefit associated with the usage of renewable materials and their recyclability prospects (Andrew & Dhakal 2022). LCA can serve to identify hotspots and optimization measures within the value chain concerning raw material sourcing, transportation, and adaptation of manufacturing processes. Other important roles in the ecological performance evaluation of NFRP composites are the consideration of substitution potentials of the bio-based materials in respective industries and repair and recycling prospects (Zhao et al. 2022).
Development of physical-biological filters for groundwater remediation of
tetrachlorethen and naphthalene© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Groundwater contamination by anthropogenic organic compounds represent a serious threat to water resources, which therefore have to be remediated to be available for future use. In addition, such remediation actions are often time and cost intensive. Hence, the overall goal of the presented project is the development of a physical-biological ex-situ filter for their effective removal.
The potential of insects in waste management – an introduction to possible applications© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In order to remain competitive for achieving a circular economy we need to consider even more alternative pathways to close the loop for material and waste streams down to a nutritional level. A sustainable and value adding strategy is the intensified rearing and use of insects, in particular the use of edible species as human food and animal feed.
Development of local municipal solid waste management in the Western Transdanubia region of Hungary© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Hungarian municipal solid wastes (MSW) management has developed tremendously over the past 15 years. More than 3,000 landfills and dumps had been closed, just to mention one improvement. However, still, lots of work is necessary to accomplish the EU’s ambitious aim of decreasing landfilling and increasing recycling and composting.
Separation of contraries during the treatment of biowaste prior to wet fermentation© Wasteconsult International (5/2017)
An efficient biological treatment of source separated organic waste from household
kitchens and gardens (biowaste) requires an adequate upfront mechanical preparation. This typically includes a separation of physical, non-organic contaminants like glass, plastics, etc. which otherwise might end up in the compost or digest.